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1. Introduction

This paper is concerned with an expansion theory for solving certain
linear initial value problems in partial differential equations. In parti-
cular, the equations congidered are to have classical solutions corres-
ponding to arbitrary polynomial initial data functions,

For this class of problems, there exists a formal solution operator re-
lated to the equation, which transforms arbitrary polynomials in the space
variable into classical solutions of the equation. The solution reduces to
the given polynomial at the initial point. The derivation of this operator
is an extension beyond the constant coefficients case of the derivation
of the operational solutions of the Heaviside or Mikusinski operational
calculus [10]. The transformation of polynomials further provides an
immediate classical interpretation of the effects of the formal solution
operator,

Through the>use of this operator, generalized Appell sets of polynomials
are transformed into basic solution sets for the equation. Series ex-
pansions in terms of these solution sets are studied. A similar expansion
theory has been obtained for solutions of the heat equation by Widder and
Rosenbloom [12], In the parabolic case, the methods of Fourier transforms

and generalized functions have been used to find generalized solutions, see [9].
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The series representation theory here provides an alternative method for
such problems, does not give existence or uniqueness theorems, but does increase
the number of problems whose solutions may be examined explicitly. It further
removes the consideration of the type of the partial differential equation.

The representation theory is developed here for a single equation in one
space variable, We further consider only the first of the initiazl data
conditions given, since the theory for all initial data functions is simply
a vector generalization of this case. Generalized solutions are made to
correspond to given initial data functions by the use of the theory of bi-
orthogonal expansions in Banach spaces [7].
2. Solutions having polynomial initial data.

In this section we develop a method for solving the linear homogeneous
initial value problem

P(Dx,Dt) U(x,t) = 0; U(x,0) = Q(x), (2-1)

where Q(x) 1is a polynomial. The differential operator P(DX,Dt) in

(2-1) has the form

L M ..
- 1o
P(D.,D,) = £ T a,.(xt) D D, (2-2)
X't 1=0 =0 ij X't
_ 0 _ 0 .
where Dx = and Dt T Throughout this work, L and M are

to denote the orders specified in (2-2). In the Mikusinski operational
calculus, if the coefficients, aij’ are constants, there exists an operational
solution to (2-1) to be interpreted within the field of convolution

quotients [10]. A similar operational solution, F(x,t,Dx), is developed

here which has the formal property that F(x,t,Dx)Q(x) = U(x,t), the

solution to problem (2-1), for arbitrary functions Q(x). In the case that

Q(x) is a polynomial, this transform is a classical solution to the problem.
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Theorem 2-1: Suppose F(x,t,A\) 1is a classical solution to the associated

operator problem,

P(D_*+ A,D,) F(x,t,n) = 05 F(x,0,\) =1, (2-3)
Then, F(x,t,Dx) is a formal solution operator which transforms arbitrary
polynomials, Q(x), into classical solutions of (2-1).
Proof: Since polynomials are entire functions, F(x,t,Dx)Q(x) becomes a
classical solution to (2-1) whenever the operator identities

P(DX,Dt) F(x,t,DX) = 0, F(x,O,Dx) =1 (2-4)

are satisfied. We get
P(D,, Dy )F(x,t,D ) = (2-5)
L M

C i
L Toa,.(x,t) DJ s () D K pix, t,D_ )D ,
i=0 j=0 1J ty=0 k

where we used Leibniz's rule, and where Dl denotes differentiation with
respect to the first argument. If we now replace Dx on the right hand
side by A, we get )

: oy (x,t) DJ 5 D KEp(x,t,0) = (2-6)
1=0 J_O 1 k=0

P(Dx+ x,Dt)F(x,t,x) .

This vanishes by (2-3). For the initial conditions, we get
F(x,0,D)Q(x) = 1-Q(x) = Q(x).
This completes the proof.
If the coefficients in P(DX,D ) do not depend upon x, then the formal
operator itself need not depend upon X, for in that case, the equation in
(2-3) does not depend upon x. The associated operator problem then becomes

P()\,D )F(t’}\) = O, F(O,)\) = 1- (2"7)




If N\ represents generalized differentiation , this is just the Mikusinski
form.

In order to simplify the interpretation of the formal solution operator
acting on polynomials we shall consider in the sequel, only formal solution
operators having the series form,

o0

F(x,t,D ) = nEO F_(x,t) Di . (2-8)

The following corollary to theorem 2-1 shows that this form is always
attainable in the case that (2-1) has a classical solution for arbitrary poly-

nomials, Q(x).

Corollary 2-1: If there is a classical solution Us(x,t) to (2-1) for
s
Qx) = §7 : 5 =0,1,..., then the functions
n < n-k

are the coefficients of D: in (2-8).

Proof:  Suppose F(x,t,Dx) has the form (2-8). For initial data e>%,

the solution is formally just F(x,t,a)e>> . The exponential shift rule may

be written as

P(D+ X,Dt)e_xxU(x,t,X) = é‘xxP(DX,Dt)U(x,t,x). (2-10)
Therefore, if U(x,t,\) satisfies the equation in (2-1), and if
U(x,0,\) = R , then

F(x,t,0) = e U(x,t,\) (2-11)
is the desired solution to the assoclated operator problem. Now, let

{Us(x,t)}:=0 be the solutions of the hypothesis. Then, the function

Ulx,t,\) = % Us(x,t)xs (2-12)
s=0

satisfies the requirements of (2-10,11), so that




[o o]
T Us(x,t)xS
s=0

F(x,t,\) = e ¥

is the solution of (2-3). This gives the form (2-9) for Fn(x,t).
It may occur, as in [12], that each Fn(x,t) is a polynomial. In that
case, equation (2-8) then will give us that the solutions to (2-1) are

themselves polynomials. Let N dencte the degree of Q(x). In any case,

N
Uet) = = F (xt) @™ (. (2-13)
m=0

For each Fh(x,t) a polynomial, we get immediate degree relations in x
and t for U(x,t). Let M denote the degree in x of Fn(x,t), and let
Nn denote its degree in t. Then the degree of U(x,t) in x is

3 (U(x,t)) = max [M, + (M-j)] , (2-14)
K <N I

and in t is

5, (U(x,t)) = O(mgz . N. . (2-15)
< i<

It is also clear at this point that the restriction on Q(x), i.e.
that it be a polynomial, may be removed if we are careful about convergence
of F(x,t,DX)Q(x). If Q(x) were analytic, this transform would exist
formally as

U(x,t) = T F (x,t) Q(m)(X) , (2-16)
n=0 T

and U(x,t) will be a solution under proper convergence of the series on
the right hand side. For solution expansions over - o < x < o , such
questions must be considered, but we restrict our attention to a finite
interval in this development.
3. Generalizations of initial data and dimension.

Up to now we have digcussed the formal solution operator only in the case

of a single initial data function, and with the restriction that x be a



one dimensional real variable. Although we shall retain these restrictions

in the sequel, we indicate, in this sectlon, the generalizations to the cases

of several initial conditions, several space variables, and to systems of equations.
In order to properly pose a Cauchy problem for the equation in (2-1),

we need to specify the M initial conditions

D% U(x,0) = @ (x) 5 k=0,1,..., M1, (3-1)

where M denotes the order in Dt of P(Dx’Dt)' The formal solution

operator for the problem thus attained may be found as follows. Let

Fj(x,t,x) be a solution to the jth associated problem:
k

P(Dx+ x,Dt)Fj(x,t,x) = 0, DtFj(x,O,X) = bjk’

(3-2)
for j,k = 0,1,...,M-1. Here, as in the previous section, we may ask that

Fj(x,t,Dx) be given a series form. In this case,

o

Fj(x,t,Dx) =z an(x,t>D§ . (3-3)
n=-]

Then, let F(x,t,Dx) denote the M-vector

(Fo(x,t,Dx),...,FM_l(x,t,Dx)). Let &(x) denote the M-vector

(¢O(x),..., @M_l(x)). Then, just as above, the scalar product of these

vectors,
U(x,t) = Fhﬁﬂ&)@x% (3-4)

is the desired formal solution to the given Cauchy problem.

We have also considered only problems in the single space variable x.
Gt ai qh
If we allow x to denote (xi,...,x ), and define D =D~ +«s D ’
n b'e % X,
equation forms such as (2-1) remain unchanged, and the associated operator
equation is still

P(D_ + A,D )F(x,t,)) = 0O, (3-5)

where \ = (A Xn). Expansions of initial data functions will generalize

1,0.-,




immediately to n-space if the domain of definition of these functions is

I
contained in some product set, TT Ii' This is due to the fact that
=]

n n
L( 1) =TI L)
i=l i=1
Now consider a system of equations
k
kionk(DX’Dt)Uk(x’t) =0: § =0,1,..., J. (3-6)

If we use precisely the same arguments as in theorem 2-1, we find that the
associated oierator equation for this situation is just

kEopjk(Dx+ A,Dy) F(x,t,0) =05 § = 0,1,..., J . (3-7)
Once again this is just a vector generalization of the situation which is
treated in this work.
4. The solution representation problem.

We have determined a method for finding classical solutions to (2-1),
in the case that Q(x) is a polynomial (or perhaps an analytic function).
We now extend the class of admissible initial data for such problems to
certain subsets of L2(I), where I denctes some closed interval of the
x-axis. If we wish I to be (-, ©), we must extend theorem (2-1) to hold
in the case that Q(x) is a basis element for LZ(Jn;n) such as, perhaps,
any Hermite orthogonal function. For any finite interval, the class of all
polynomials will suffice for the representation of initial data due to the
Weierstrass approximation theorem.

In particular, the polynomial approximations used shall be elements
of the linear spanofasimple set of generalized Appell polynomials.

Boas and Buck [2,3] have shown that polynomials of degree precisely equal

to n are generated by a function of the form



G(x,a)= A(a) y(xg(a)) , (4-1)
in the sense that
G(x,a) = Z pn(x)an. (4=-2)
n=0
Here we must have
Aa) = = Aa", Ay %0, (4-3)
¥(s) = ¢ Ynsn , v 0, k=0,1,..., (4-4)
n=0
and [+] n
gla) = = ga . (4~5)
n=1

The above mentioned Hermite orthogonal functions have such a generator,
except that in that case, condition (4-5) is violated.

Boas and Buck have studied representations in series form of analytic
functions in terms of such sets. In order to attain expansions of L2(I)
functions in terms of these polynomials, we rely upon the theory of biorthogonal
expansions in Banach spaces. In particular, we use the presentation of this
theory in [7].

In this way, if the set {pn(x)} is minimal (cf. § 5), we obtain series
representations for initial data functions in the form

f(x)fv;go cnpn(x) . (4-6)

T

We call the corresponding series

V(x,t)'vni;lo cnpn(x,t) (4=7)

a generalized solution to (2-1), for Q(x) = f(x). In (4-7),

pn(x,t) = F(x,t,Dx)pn(x), the solution to (2-1) for Q(x) = pn(x). A
special solution expansion theory for the heat equation is handled in a

similar manner by Widder and Rosenbloom [12]. In that case, the formal
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£D°

solution operator is e x » and the basic solutions are polynomials in x
and t which are closely related to the Hermite polynomials.

The advantage in using generalized Appell polynomials in the expansion
theory lies in the fact that the corresponding solution sets, {pn(x,t)} , are

generated by
H(x,t,a) = A(a)F(x,t,D )G(x,a). (4-8)

Thus, if ¢ = a" in (4-6) and (4-7) the convergence of the generalized
solution is identical with that of the series for H(x,t,a). It is precisely
this correspondence that is basic to the subsequent convergence theory.

Let R(x,t) be the radius of convergence of the series Zan,pn(x,t)

at the point (x,t). By the radical test,

1/ J '1.

RGx,t) = [‘Ii_m [p, (%) | (4-9)
n-—> o
Furthermore, the series in (4-7) converges at (x,t) if
— 1
TIm le p (x,t)] /n 1, (4-10)
N> 0N
and diverges if
. e l/n
lim Icnpn(x,t)l > 1. (4-11)

n—> ©
Therefore, we may state the basic convergence criterion in this lemma.
Lemma 4-1: The series in (4-7) converges at (x,t) if
C < R(x,t), (4-12)
and diverges there if

C > R(x,t), (4-13)
where C is defined as
1/n

c= Tm le | . (4-14)
n—> ™

The case C = R(x,t) is indeterminate by this test.
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We call a sequence {Cn} a C-sequence if and only if (4-14) holds.
The constant C will be called the growth of {Cn}.

5. Expansions of initial data.

Here we determine the coefficients Cn in (-6) corresponding to
arbitrary f(x)sLZ(I). For these expansions, we use certain restricted sets
of Generalized Appell polynomials, We rely on the theory of biorthogonal
expansions in Banach space, in particular as presented by Frink [7]. For
completeness, this work is summarized in the following paragraph, in the case
that the Banach space in question is LZ(I)'

A sequence of polynomials {pn(x)} is said to be minimal in LZ(I)

if p (x) £ sp {pm(x)}mfn . If {p (x)} is minimal, and if f(x)eL,(I),
then there is a unique constant ‘S , Such that f(x) - %:npn(x) is in
sp{pm(x)}m%n. These constants determine continuous linear functionals on
L2(I) by the relation sn = Ln(f). Therefore, since L2 is a Hilbert
space, there exists a set {wn(x)}c:Lz(I) such that Ln(f) = (wn,f),

and such that (wn,pm) =% ., the Kronecker delta. A system such as
{pn(x); wm(x)} is called biorthonormal, and is said to be complete if
either P = {pn(x)} is complete or if W = {wn(x)} is complete. If
{pP;W} = {pn(x);wm(x)} is complete, then both P and W are complete.

The existence of the set W biorthonormal to P is sufficient for the

n
minimality of P. Let f(x) = l.i.m. I cnkpk(x). Then, we get
n—> o k=0

lim o = (wk(x),f(x)), a fact we use in determining the set {ck}.
n—p ©

Since the minimality of P 1is necessary and sufficient for the ex-
istence of the set W, we shall consider generalized Appell sets which are
minimal in LZ(I)’ where now I 1is elther the domain of interest for the

problem, or some containing interval. In certain cases, the non-
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minimality of P may be determined by an examination of the generator,
A(a) y(xg(a)) [3]. This lemma further indicates that minimality is also
closely allied to the domain of L2(I).

Lemma 5-1: Let the complete set {pn(x)} be minimal in LZ(I). Then P
is not minimal in LZ(J) if JPI and J - I has positive measure, or in

L2(J) if IDJ and I - J has positive measure.

Proof: Suppose first that I2J. Let f(x)e LZ(J)’ and g(x)e L2(I) such
that, in I - J, g(x) # 0 on a set of positive measure. Define @(x)

and ¢ (x) thusly:

p(x) = {f(x) ; xedJ
0 ;XEI—J,

and y(x) = {f(x) ; X€J
glx) 3 xeI-J.

Both ¢(x) and ¥(x) are in LZ(I)’ and determine unique sequences
{cpn} and {\{:n} which are not equal. Consider the sequence {°(n}= {cpn—\hn}.
The function determined by this sequence 1s zero for xeJ, so in
: 1 . :

L2(J), if o #£ 0, pk(x) = - =3 n}Zék dnpn(x) ,which contradicts the
minimality of P in L2(J). The argument for J DI follows immediately
from this.

We now turn to the problem of determining the set {wn(x)} bigrthogonal
to a minimal generalized Appell set {pn(x)}. Suppose that G(x,a) is

analytic in a for all xeI for |a| < max (||, |B

). Here <« and B
denote the endpoints of I. Consider the Fredholm integral equation of

the first kind,

£(x) = [ clx,y)Fly)ay. (5-1)
I

Upon substitution of the series form of G(x,y), this becomes
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(o8]
£(x) = Tp (x) [ yFGay . (5-2)
n
n=0 I
If there is a function F(y) such that (5-1) is satisfied and the integral

on the right is almost uniformly continuous, then there is an expansion for

f(x) in terms of {pn(x)} with ¢ = j&nF(y)dy.

Let Kl(x,y) = J;G(x,z)G(y,z)dz and let Kz(x,y) = J;G(z,x)G(z,y)dz.

Then there exist sets of eigenvalues and eigenfunctions, {xn},{¢n(x)} and

{wn(x)} such that

0, (x) =\ ~fIG(x,y) v, (v)dy (5-3)
o, (x) =2 J;Kl(x,y) 9, 7)dy (5-4)
¥ (x) = fIG(y,x) o, (y)dy (5-5)
() =0 [ K] v, (e, (5-6)

since the kernels Kl and K2 are gymmetric. By a theorem of Picard (4],
a necessary and sufficient condition for the existence of a square integrable
solution to (5-1) is that

© 2
nEOxi (J;f(x)wn(x)dx ) (5-7)

be convergent. Thus, we have the following lemma.
Lemma 5-2: If the series (5-7) is convergent, there exists F(y)e LZ(I)

such that
(£,w) = (77, F@)). (5-8)

Let {pn(x)} be a simple minimal set of polynomials in LZ(I)°
Let {wn(x)} be a complete orthonormal set of polynomials for LZ(I)'

For any f(x) eLZ(I) we have
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$x) = T (£,4)v_(x) (5-9)

n=0
in the mean on I. Also, by the continuity imposed upon G(x,y) for

(x,y) eI x I, we have

6ix,y) = °§o X (x) ¥,(y), and (5-10)
n:

G(x,y) = ; tk(x) Yk(y) . (5-11)
n=0

From (5-8) and (5-11) we get, formally,

S TP = B 0)GEG)). (5-12)
o ¥ \ XL n:Opn x)\y y

Since {tk(x)} is a complete orthonormal set of polynomials we have
(x) = B p
¥ x) = L P x). (5-13)
m=0
Therefore, from (5-12) and (5-13) we get formally

oo o) k
v (x) = kin«knwk(x) = kfn Q§O°ﬁcn°ﬁcapo_(")° (5-14)

The convergence in the mean of the first series in this last expression is
guaranteed by the minimality of {pn(x)}. This yields the theorem.
Theorem 5.1: If {pn(x)}CZLz(I) is a minimal simple set of polynomials,

then the sequence {wn(x)} is a subset of L2(I), and the system

{pn;wm} is complete and biorthonormal in LZ(I)'
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6. Convergence of generalized solutionms.

We now turn to the problem of convergence of the generalized solutions,
(4-9). The basis for this theory is lemma 4-1, which is used to determine
point sets in the plane in which the series converges. Let R(x,t) be as

defined in (4-9), and let

-1
Qx,t) = [ lim ]qn(x,t)ly/n] , (6-1)
n-—>

where qn(x,t) = DiDthn(x,t). Throughout this section, (L,M) denotes
the order of the operator, P(Dx’Dt)’ of the equation in (2-1). Let

U(x,t) denote the series in (4-7), and define

W(x,t)migocnqn(x,t) . (6-2)

It is clear that Q(x,t) is the radius of convergence of
anqn(x,t). Consider R(x,t) and Q(x,t) as functions of x and
t. If we admit the possible value + o into the ranges of these
functions, then each of them is a well-defined, non-negative function
for all (x,t) in the plane.
Fix C such that, 0 < C { ®, Let us now define the point
sets UC(x,t), Vb(x,t) and CC(x,t) by the relations
Uo(e,t) = {(x,8) | C <P(x,0)} (6-3)
V.(x,t) = {(x,t) | ¢ <P(x,t)} , and (6-4)

C

Cc(x,t) = {(x,t) | C <Qx,t)} . (6-5)
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We now derive the containment and convergence relations
vhich justify the above definitions of generalized solutions. It
18 clear from the defining relations that Uc(x,t) c Vc(x,t). Also,
if €>D, then Uy(xt) c Uplx,t) , Vo (x,t) < Vp(x,t) and

Cc(x,t) c cD(x,t).

Lemma 6-1: Let {cn} be a C-sequence. Then, the series for
U(x,t) converges inside Uc(x,t) , and diverges outside Vc(x,t).
The series, (6-2), for W(x,t) converges inside Cc(x,t).

Proof: By lemma k-1, U(x,t) converges for C < R(x,t), ie for
(x,t) € Uc(x,t). Also, U(x,t) diverges for C > R(x,t)qfor
(x,t) ¢ Vc(x,t). Finally, W(x,t) converges for C < Q(x,t), ie.
for (x,t) e Cc‘(x,t). '

This next lemma provides an alternative description of the
sets Uc(x,t) and Cc(x,t). First, letTT(x,t) = [(x,t)'pn(x,t) ¥ 0
for only finitely many integers n}. On TT(x,t) it is clear that
R(x,t) and Q(x,t) are both equal to + =.
Lemma 6-2: Let I's ‘ ([cn}} be the collection of all C-sequences
for some fixed C. For {c } I, let U((cn], x,t) be the set of °
all points at which U(x,t) converges. ILet C({cn}, x,t) be

the set of points at which W(x,t) converges. Then,

nu ({c )}, xt) = Uylx,t), and (6-6)

ne (le), x, t) = Cylx,t), (6-7)

where the intersections are taken over all elements of T.
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Proof: First consider m({cn}, x,t). It is clear that

M (x,t) c Uc(x,t) cn U({cn}, X,t), since any C-sequence
defines a convergent generalized solution inside Uc(x,t) .+ Let
(x,t) be an element of h U([cn}, x,t) - Ub(x,t). At this point,

R(x,t) = C, since each U({cn}, xt) Vc(x,t) by the previous

: -1 :
lemma. Lgt c = [pn(x,t) ] ir pn(x,t) # 0, and let c, =0

if pn(x,t) = 0. Then, there is a subsequence of {cn} such that

1im Icnll/n = R(x,t), by the definition of R(x,t). Therefore,
set c, = 0 also if c, ié not an element of such a subsequence.
The sequence thus constructed is a C-sequence. Its associated
generalized solﬁtion diverges since the series in (L-7) becomes an
infinite sum of 1's. Therefore, the set N U({cn],x,t) -
'Uc(x,t) = @ . The proof of the second part is precisely the same.
We now establish the key theorem in the correspondence of
U(x,t) to classical and Sobolev generalized continuous solutions
[11].
Theorem 6-1: The series (4-7) defining U(x,t) converges to
a continuous generalized solution of the equation in (2-1) on
compact subsets of Uc(x,t). This series converges to a classi-
cal solution of the equation on compact subsets of Cc(x,t) which
contain the set I x {0}.

Proof: Let X be & compact subset of Uc(x,t). Let

N
Sp0ot) = 2 epat) - (6-8)
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N
SN(x,t) is a classical solution to (2-1) with Q(x) = & cnpn(x).
n=0

By lemma 6-1, [SN(x,t)} converges pointwise in X, and so the
sequence converges uniformly to a continuous function on X. Such
a limit is a Sobolev generalized solution.

Let Y be a compact subset of Cc(x,t) , such that
Y2 Ix {0}. Then, by the argument above, W(x,t) converges uni-
formly in Y to a continuocus function. With suitable choices of

integration functions, pn(x,t) = f-:f qn(y,s) dyL ast. Inte-

grating the series for W(x,t) term by term (1L,M) times in this way,
we get U(x,t). By the uniform convergence of the series for
W(x,t), the limit of {SN(x,t)} is U(x,t), and is L times con-
tinuously differentiable in x and M times contiziuously differ-

" entiable in t. Since I x {0}JcY, lim U(x,t) exists, is L
t—e0 .

times continuously differentiable. and represents the initial data
function for the problem.

This theorem also gives us a further containment relation
between sets. A single point is a compact set in the plane, so
the series for W(x,t) converges whenever {SN(x,t)} converges.
Thus, we have the relations

CC(X,‘I'-) c UC(X,t) ’ Q(x,t)SP(x,t). (6-9)

In order to develop a correspondence with the theory of
distributions, we need some characterization of measurable sets on

which the series (4-7) converges in the mean. ILet R({cn} »X,t)
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be such a set for a given sequence {cn}. That is, suppose the
series in (4-7) converges in the mean on R({cn},x,t). Such sets
exist if Uc(x,t) contains ’a, measureble compact subset. This is
due to the fact that, on such sets, U(x,t) is uniformly continuous,
and therefore square integrable. We also obtain the following
lemnma.
Lemma 6-3: Let Y be a connected subset of R([cn} »X,t) with
positive measure. Then, Y C W, where the bar denotes
Euclidean closure.
Proof: The series for U(x,t) converges in the mean on R, and
therefore in measure in Y. ILet Y' be the points of Y at which
the series (L-7) converges. Then, Y - Y' has zero measure, and -
Y is connected, so Y' is dense in Y. Also, Y' cC Vc(x{t) by
lemme 6-1. It follows that |

Y ¥ <V (xt)

By definition, the parti al sums of (6-8) converge in the
mean on B({cn} , X,t), to a Sobolev, L2(R) , generalized solution of
the equation of (2-1). Now we develop an immediate connection with
the theory of distributions as applied to partial differential
equations [ 8].

Lerma 6-4: Iet o(x,t) be an arbitrary element of the testing
space C:(R({cn}, x,t)). Iet U(x,t) be the LJRIlimit of the
partial sums in (6-8). Then the distribution of function type

defined by
U(p) = f U(x,t) o(x,t) dx at
R
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is a solution in the distribution sense to the equation in (2-1).
Proof: et Tp(nx,nt) denote the formal adjoint of P(D_,D,).
Then,

(0,0, (o) = | Ux, ) B(0,0,) ol t)ex at

=1.1 .mf SN(x,t)(TPcp)dx dt = l.i.m.f[P(Dx,Dt)sN(x,t)] p(x,t)dx at.
N—eaoV R N—eoVvR
(6-10)
By the Lebesgue dominated convergence theorem, since the integral
of this limit exists, we get immediately that P(Dx,Dt) U(p) = O.

We may classify initial date functions according to the
growths of their pseudo-Fourier coefficients, Sy That is, let
£(x) € LQ(I). Then we say that f£(x) has growth C if (e} 18
a C-sequence. This definition, together with the convergence

‘theory developed up to this point, prompts the following definition.

Definition 6-1: A function, f(x) e L,(I), is a generalized
initial data function if its growth is finite. It is generalized
52 initial data if there exists a set R([cn], X,t) containing

I x (0}. The function f(x) is generalized continuous initial

data if Uc(x,t) > I x{0}, and is classical initial data if
Cc(x,t) > Ix {0}. |

The following lemma is concerned with the existence or
non-existence of the convergence sets Uc(x,t). As becomes
apparent in the proof, the lemma holds as well for the sets
Vc(x,t), Cc(x,t) and R({cn}, x,t).

lemma 6-5: There exist void convergence sets Uc(x,t) if and
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only if R(x,t) is bounded above. If R(x,t) is bounded below
by M, then Uc(x,t) is the whole plane for all C < M.

Proof: If Uc(x,’c) =@ for some C, then there is no point
(x,t) such that C < R(x,t). Such a C serves as an upper bound
for R(x,t). If R(x,t) <N, then U,(x,t) = ¢ for all C > N.
If R(x,t) > M> C, then the defining relation is satisfied at
all points of the plane.

In the preceding work of this section, we have considered
the sequence {cn}fixed, and have then determined the corres-
ponding convergence sets. In general,however, we wish to deter-
mine convergence of generalized solution series for the problem

P(Dx,Dt) U(x,t) = 0 for (x,t) e I xBE, (6-11)

U(k,0) = £x) € L(1), (6-12)

wvhere I and E are x and t intervals, respectively, and
where O ¢ E. We answer this convergence question in the next
theorem. ILet

= i 2V)s = 2L 6-
Ry I)x:EfR(xt) and Qg ]::qu(xt) (6-13)

Theorem 6-2: ILet f(x) e L,(I) have growth C. If C < RR;
then the series for U(x,t) converges to a generalized continuous
solution to problem (6-11,12). If C< Qqs the series for
U(x,t) converges to a classical solution of (6-11,12). The series
for U(x,t) defines an LQ(IXE) generalized solution to the

problem only if C < ess inf R(x,t).
IxE
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Proof: Under the hypotheses, C < RR implies that

Uc(x,t) D2IxE and C<Q implies that Cc(x,t) > IxE.
The rectangle I x E is compact, so theorem 6-1 gives the first
two conclusions. If C > ess. inf R(x,t), there is a set of
positive measure in I x E on which C > R(x,t). On this subset,
the series for U(x,t) must diverge, so that U(x,t) cannot cone

verge in the mean on I x E.

T. The analyticity theorem.

The theorem of this section provides a method for deter-
mining the convergence radius, R(x,t), used in the definition of
the convergence sets Uc(x,t) and Vc(x,t). The method is based
on the special form of the Boas-Buck generator for the basic poiy-
nomial sets. In case G(x,a) = e>X the determination of
R(x,t) is immediate. Let r(x,t) be the radius of convergence of

F(x,t,\). Then,

F(x,t,Dx) G(x,a) = * F(x,t,a),
so that r(x,t) = R(x,t). A direct generalization of the analyti-
city theorem will determine Q(x,t) and the set Cc(x,t). We
state and prove this theorem in several parts to ease the con-
sideration of separate cases.
Suppose, first, that the generator G(x,a) is an entire

function of a at the point x. Then, {pn(x)} satisfies

T | p,(0) |70 =0, | (7-1)
n >
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Consider

F(x ) 6lre) = A2) 37, (00)6™e) ¥ (xe(a)),

at the point (x,t). Since G(x,a) is entire, A(a),g(a) and y(s)
are all entire. We now determine conditions on the formal solution
operator, F(x,t,Dx), which force the transformed generator,
H(x,t,a), to be an entire function of a. If & (t) is an entire
function of t with growth ( p,7), then OX(t) 1is again entire
and of growth (p,7 ),[1]. Since we are interested only in growth

arguments, we consider the sum
A(a) ¥(xg(a) Eo F_(x,t) s‘_‘(ai, (7-3)

instead of the more complicated form in (7-2). The function de-
‘fined by (7-3) is, therefore, entire in a whenever F(x,t,g(e)) is
entire in g(a). This proves the first part of the theorem.

Theorem 7-1.1: If F(x,t,\) and G(x,a) are entire functions

of A\ and a at (x,t) and x repsectively, then H(x,t,a) is
an entire function of a at (x,t), and R(x,t) = + = .

If F(x,t,\) is a regular analytic function of A at
(x,t), 1let r(x,t) denote its radius of convergence there. Then
(7-3) represents an analytic function of a if |g(a)| < r(x,t).

Let
A(x,t) = inf {|a] | |g(a) | = r(x,t)}. (7-4)

The function A(x,t) is clearly greater than zero if r(x,t)
is, since g(0) = 0 and g(a) ¥ 0. This gives us the second

portion of this theorem.
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Theorem 7-1.2: Suppose that, at (x,t), G(x,a) is an entire

function of a and F(x,t,\) is an analytic function of A for
IA] < r(x,t). Then H(x,t,a) is analytic and R(x,t) = A(x,t),
where A(x,t) is defined by (7-4).

Now suppose that G(x,a) is just a regular function of a
at x and has the radius of convergence p(x). Suppose first

that g is entire. Then, if o is the radius of convergence of

*(3):
p(x) = 1inf {|a] | |g(a)]| = T,%l-} : (7-5)

Here we note that p(x) must be smaller than the radius of con-
vergence of g(a) for all non-zero x, and is equal to this
radius at x = O,

If F(x,t, \) is an entire function of A at (x,t),
the series on the right in (7-2) will converge absolutely and
uniformly if

| &) ¢ Pagle)) MP<n . (16)

n

Since g(a) is finite for |a| < p(x), this holds if

1l
T |1 xe(a)) | /P <. (7-7)
n —>®

The function ¥(s) is analytic, so t(n)(s) has the same
radius of convergence. However, at a fixed point s, i(n)(s)
may grow as rapidly as n! as n increases. We must, therefore,

consider this case in a different way. We have
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F(x,t,Dx) G(x,a) = A(a) jo{ni(m)n x " Fn(x,t)} Yy, [xg(a)]" .

(7-8)
Let b(x,t) denote the radius of convergence of this series as a
pover series in g(a). Using the radical test, we get
1/
-1 1 — m - m
P (xt) = ooy Tm | Z (w) x e (x,t) | . (7-9)
PAX M ———co n=0 n n

The 1im on the right hand side of (7-9) may be thought of as the

reciprocal of the radius of convergence of the series

«© m -
olx,t,y) = Z y £ (m) xF (x,t)
m=0 n=0

in the variable y. Changing orders of summation, we get

pod y/.a& 1
olxt,y) = Eant F (o) (Fof 22—
n=0 (1-y)
As a series in y[x-Xy]'l, this series has a radius of conver-

gence given by d(x,t), where

a(x,t) = Iim [(n!)l/n (Fn(x,t)ll/n] . (7-10)

)~

/

1
If r(x,t) 1is finite, d(x,t) =0 since (n!) *—>

with n, If r(x,t) = +«, and if d(x,t) > 0, the series
for o(x,t,y) converges for |y| <1, and |y| < |x|| 1 -yla(x,t).

That 1s, the series converges for y < min (l’—lid) =

~1
d(x,t) [1 + da(x,t)] . Therefore, (7-9) gives
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b(x,t) = p(x)[ TR ] (7-11)

This gives the third part of the theorem.

Theorem 7-1.3: If ¥(s) has radius of convergence g, then

H(x,t,a) has radius of convergence in a at (x,t) given by

R(x,t) = inf {|a| ; |g(a) | = b(x,t)}. (7-12)

From equation (7-10), we obtain the following corollary.

Corollary 7-1: If F(x,t,\) and ¥(s) are both analytic
functions with finite convergence radii, H(x,t,a) diverges for
all non-zero a, and R(x,t) = 0.

Another example in which R(x,t) = 0 is givén by the
ﬁrmal operator etD2 connected w:l.th the heat equation, with the

Boas-Buck generator G(x,a) = [l-ax]"l. In this case,

2k
pad 2k)! Lk a
H(x’t’a) = X i—%—'_ t [ A
k=0 k! (l-ax)2k+l

vhich diverges for all non-zero choices of x,t and a. This is
due to the fact that (7-10) becomes

—_ 1
atx,t) = Tm | ﬁ%,v | /n = 4+
n—> o )

This completes the theorem except for the consideration of
the effects of A(a). Since A(a) merely multiplies

F(x,t,Dx) ¥(xg(a)), if A(a) has a radius of convergence A,
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then in any case, the radius Rx,t) will just be the minimum of A and
the convergence radius determined in the theorem.
To determine Q(x,t) we must examine the radius of convergence

of Df‘( D’,;‘H(x,t,a). This is just

M L L T-m =

D| Z (m)[nx F(x,t,DX)] [ xG(x,a)] .

m=0

Therefore, we may use the theorem to find Q(x,t) by finding the radius

of convergence for each function

T-m M
[Dx n D, F(x,t,DX)] [ Dﬁ G(x,a)] :+m = 0,1,...,L.

8. The well posed problem.

In this, for simplicity, assume that P(Dx’Dt) is first order in t.
Suppose the problem (6-11,12) is well posed in the rectangle I x E. That
is, suppose (6-11) has a unique solution corresponding to any classical
initial data function, and that the solution depends continuously upon the

initial data. The first lemma shows that IxEc_:,VC(x,t) with C = sup P(x). The
Xel

function P(x) is the convergence radius of the generator G(x,a), at the
point =x.

Lemma 8-1: Let (8-11,12) be well posed, and let f(x) be classical
initial data. Then the unique solution to the problem is the function
U(x,t) defined by (5-2).

Proof: The Weierstrass approximation and the analysis of section 5
guarantee that Z(f,wn)pn(x) will converge uniformly on I to f(x).
This series is also L-times continuously differentiable term by

term on I. Let SN(x) Ingo(f,wn)pn(x). Then, since each SN(x,t)

of (6-8) 1is a classical solution to (6-11) with SN(x,O) = SN(x),

the well posedness gives us the desired result. That is,
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sN(x,t)-—> U(x,t), and that U(x,t) is the classical solution to (6-11,12).
Using the above expansion theory to obtain solutions to (6-11,12), it

is natural to ask when the partial sums converge to a known solution to

the problem. That is, if SN(x,t)-> U(x,t) for all classical initial

data, and if U(x,t) is a classical solution, vhat can we say about the problem?

This is answered in the following theorem., Let CL’M(I x E) denote the class

of all functions, H(x,t) which are L and M times continuously differentiéble

in the arguments x and 1t respectively. The norm which guarantees the

completeness of this space is defined by

||n(x,t) || = Z sup DDi Din(x,t) | | . (8-1)
L,M i<l (x,t)eIxE x e
M

Let CL(I) denote the corresponding one variable space with the norm

£y, = '?L )s(ulla [ID}icf(x)l} . (8-2)
i< £

Theorem 8-1: Let f(x) e CL(i), so that f(x) is classical initial data.
Suppose that

1i S, (x,t) - U(x,t) =0, (8-3)
N_;-mmll N ¥ X HL,M

whenever U(x,t) is a classical solution to (6-11) with U(x,0) = f(x).
Then, problem (6-11,12) is well posed.

Proof: The uniqueness is obvious, for if U(x,t) and V(x,t) were two
solutions with initial data f(x), (8-3) would fail for one of them unless

| U(x,t) - V(x,t)HL = O This says U(x,t) = V(x,t) in CL’M(IXE).
b

We now show the continuous dependence on initial data. Let

{fn(X)}C:CL(I) such that

[£y(x) - £ [[;—> 0 as N—> (8-4)
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As above, each fN(x) has an expansion in terms of the set
{pn(x)} Let SMN(x,t) be defined by

N
) = x,t). 8-
Sy (%, %) nio (£#,) 2, (x,t) (8-5)

By ( 8-3), there is a sequence of solutions {UM(x,t)} such that

Sy Un

such that € —> 0 as n—> . Then, ( 8 -3) may be restated as

for each M. let {en} be a sequence of positive reals

follows:

For each M, there exists N(M) such that N > N(M) implies that

||SMN(x,t) - Uy (x, t] |L’M < g , (8-6)

Also, since fM(x)—> f(x) in CL(I) , Frink's work guarantees
“that (fM,wn)—-> (f,wn) for each n as M—> ®». Therefore, for

each N, there exists M(N) such that M > M(N) implies that

I ISMN(x:t) = S“,N(x)t) I IL,M < eN' (8 '7)

Letting {(M,N)} be partially ordered by

{(Ml,Nl) < (M,N,) if and only if M) <M, end N, < N},
(8-8)
the completeness of CL’ M(Ix.E) guarantees the convergence of
{Sm(x,t)} to U(x,t), due to a theorem of E.H. Moore [6].

Therefore, for each n there exists (M ,N ) such that
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(M,N) > (Mn,Nn) implies that

I IUM(X:t) - U(x,t) I IL,M < |UM(X:t) - SMN(x’t)' IL M

+||SMN(x,t) - U(x,t)]lL’M < 2e_. (8-9)

Therefore, U(x,t) depends continuously upon f(x).

It is clear that these results apply also to the weaker forms of solutions.
We need only ask, in the definition of well posedness, that solutions are
Sobolev generalized solutions.

9. Solution bounds and stability.

Here we obtain bounds, wvalid inside convergence sets, for convergent
generalized solutions. Let I x]ﬂgﬂc(x,t). Let f(x) be generalized
continuous initial data for (6-12), Then, (f,wn) = c_ ~ such that {cn} is
a C sequence.

Recalling that H(x,t,a) is analytic in a, we have that

1 "
p (x,t) = 7, ;;E H(x,t,a) | a=0. (9-1)

Using the Cauchy integral form, we get the basic inequality which is valid

for p < R(x,t):

IPn(X,t)I < p—nMﬁ(X,t,p)- (9-2)
The function MH(x,t,p) is given by
My (x,%,p0) = | sup |H(x,t,2)]. (9-3)
Z|=p

In Uc(x,t), the generalized solution is absolutely convergent, so that

06e,t)] < E e | Ip, Gt (9-4)

n=0
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Using (9-2) we get

UG, )| < My (xyt0p) °£O|cnlp‘n . (9-5)
n:

The series on the right converges for C < p, and we shall denote its sum
by AT(p)' Therefore, for C < p <R(x,t), the generalized solution has

the bound
[UGe,t) | <My Gxe,t,p) 2,0p) (9-6)

Now using the Cauchy-Schwarz inequality,

o1 = 1tew)] < el vl (9-)
where the norms are taken in the LZ(I) sense. It follows that

8y < el 3 [l l] o™= fisl{ate) (9-8)
n=0

s — 1/n_ :
The series in (9-8) converges for p > llmllwnll =W. So, if
W < R(x,t) in I x E, we can pick p such that max(C,w) < p <R(x,t),
and obtain the uniform bound

IIU(X?t)I < HfH [A(P)MI_I(X,t,F))] . (9-9)

This bound gives a continuous dependence of the solution on initial
data in the generalized sense.

In the case that (9<8) holds, and that E = [0,o), these bounds may
give stability results for the problems. This lemma follows from (9-6).
Lemma 11-1: If (9-8) holds, the null solution is stable if
M, (x,t,p) is bounded as t—> ®, and is asymptotically stable if
My (x,t,0) — 0 as t—> .

As an example, let

P(D_,D,) = D -D, -2t .
X X

t) t

The formal solution operator is

42
F(t,Dx) = ¥ otk .
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Then, for any Boas-Buck generator

H(x,t,a) = e“tz G(xtt,a).
It is clear that MH(x,t,p) —> 0 as t —» o, unless G(x,a) is entire
in x with order > 2. Therefore, the null solution is asymptotically
stable if (9-8) holds.
10. The mixed initial and boundary value problem.

We wish to consider the mixed initial and boundary value problem in the
strip I x E, where I = [a,b] and E = [0,o). In order to properly pose
this problem, with the equation of (2-1), we first impose Cauchy data on
I x {0}. Further we must specify X independent conditions on {a} x E,
and J conditions on {b}xE. Here, X is the number of characteristics
entering I x E at (a,0), and J, the number of characteristics entering
the strip at (b,0) [5].

To illustrate the use of the above representation theory for this

problem, assume that X > 1 and J > 1. Let us consider the problem,

f(x) (10-1)

P(Dx,Dt)U(x,t) =0, U(x,0)

U(a,t) = G(t) , U(b,t) = H(t) .
It is clear that, if either K or J is greater than one, problem (10-1)
is underdetermined.
Lemma 5-1 gives us an uncountably many representations for any functions
f(x) € LZ(I) if the set {pn(x)} is minimal in L2(J) with JoI.
Define ¢g(x) by the following

o (x) = f(x) ;xel
. (10-2)

g
g(x) +xeJ-1.
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The expansion of ¢g(x) in terms of the set {pn(x)} is a representation
of f(x) for x e I.
One might expect that, if Zanpn(x) is a representation of zero in I,

then Zanpn(x,t) is a representation of zero in I x E. A simple example

[

shows that this is not the case. Let F(t,DX) = etDX, which is part of

the wave equation operator. Then, for any x e I, pn(x,t) = pn(x+t). Let

[+0]
5> anpn(x) - 0 ; X € I
n=0 e“Ix s X £ 1.
Then, for t > b - a,
[o o]
ap (xtt) = e—IX+tI +x eI,
n=0 2 1

This is obviously due to the propogation of solutions along characteristics
for the hyperbolic problem. This gives us some freedom in adjusting the
boundar& values for the solutions.
Let f(x) be the initial data function for the problem. Then,
)
9, (x) = nio%npn (x)
is a representation for f(x) in I which vanishes outside I. The

generalized solution, o

Uo(xat) = nio@onpn(x’t) ’

will be called the basic solution to the problem. This sclution imposes
certain boundary values upon {a} x E and {b}x E. Let

Gl(t) =a(t) - Uo(a,t) , and Hl(t) = H(t) - Uo(b,t).

We must now solve the derived problem

P(Dx,Dt)V(x,t) =0, V({x,0)=0 s x eI,

Hl(t).

We derive necessary and sufficient conditions m the functions Gl(t)

(10-3)

V(a,t) = Gl(t) , V(b,t)
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and Hl(t) which allow us to solve (10-3) by means of the series repre-
sentations derived above.
Assume that V(x,t) = Zanpn(x,t) is a generalized solution to (10-3).
Then V(a,t) =G;(t), and it is necessary that G,(t) e 55{5;?;?%3},
Also, we need H, (t)e ESTE;TB:?S}. If G (t) and B (t) are in these manifolds,

and ff
Gl(t) = Zanpn(a,t) : Hl(t) = Zﬁnpn(b,t) ’

the sequence {an - Bn} must determine a zero representation in either

sp (p_(a,t)} or ;E—YB;TE:ZSE . If this last condition is satisfied,

let {yn} denote the common sequence of coefficients. Then, V(x,0) = Zy p_(x)
must vanish for x e I. It is clear that these steps are reversible, so

we have the desired conditions.

Lemma 10-1: Prohblem (10-3) has a solution in the generalized sense of the
representation theory if and only if the following three conditions are
simultaneously satisfied.

Gl(t) £ sp{pn(a,t)} s Hl(t) £ sp{pn(b,t)} . (10-4)

There exists {Yn} such that

(a) Gl(t) = § ynpn(a,t), and (10-5)
n=0

() Hl(t) = Eo ynpn(b,t) , and
; ann(x) = 0 for xe1I. (10-6)
n=0

It is clear that (10-3) may have a solution which is not attainable
from this theory, or that (10-3) may not have a solution even though (10-1)

does, since the theory may not be applicable to the particular problem.




- 34 -

For the heat equation, with G(x,a) = eax’ we get

[n/g] m n-2m
(x,t) = = t x
Pyt =0 m! (n-2m)! .

Therefore, both pZnKx,t) and p2n+1(x,t) have degree n in t. Therefore,

spﬁ%fa,t)} and spﬁ%§b,t)} are dense on LZ(E)' Therefore, condition
(10-4) is simply that gl(t) and Hl(t) are elements of LZ(E), in this
case, Also, by the duplication of degree, {pn(a,t)} and {pn(b,t)}

cannot be minimal, so there are gero representations available to facilitate

(10-5).

11. The nonhomogeneous problem.

We now indicate the analogous operator-expansion theory for the problem
P(DX,Dt)U(x,t) = f(x,t) (11-1)

U(x,0) = gx). (11-2)

In case P(Dx’Dt) is of first order in D we may use Duhamel's principle

.t’
[5] to solve this problem. However, an attempt at extending Duhamel's
principle to the higher order case yields integro-differential equations
which may not be solvable. However, suppose there exists a formal

differential operator G(DX,D such that

)

P(DXDt)G(DX,D ) £x,t) = £x,t). (11-3)

t
then, G(\,u) is the solution to the associated equation

P(DX + 2,0t u)G,u) = 1. (11-4)

Further, just as in section 2, if there is a solution to the equation
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P(D_,D, )V (x,t) = £ (11-5)

for each pair (m,n), then the formal operator exists in the form

e} © +
¢(d.,D)= % £ G (x,t)0°D;, (11-6)
Xt . —_~ In X
n=0 n=0

and Ymn(x,t) = G(Dx,Dt)xmtn. Therefore, we have the theorem.

Theorem 11-1: If (11-5) has a solution for each m and n, then there

exists a formal operator, G(Dx’Dt)’ such that (11-3) holds for any polynomial
f(x,t).

We may now expand arbitrary L2 functions f(x,t), just as in the
homogeneous case, in terms of polynomials of the form pm(x)qn(t), and

get formal solutions of the form

A [+ o BN » ¢ ]
u(x,t)~ £ £ c_ P (x,t), (11-7)
m=0 n=0 mn mn

TaY
where now Pmn(x,t) = G(Dx’Dt)pm(x)qn(t)' Then, let h(x) = g(x) -U(x,0).

Let F(DX) be the formal solution operator for the homogeneous problem.

That gives
P(DX,Dt)F(Dx)h(x) = 0 with
(11-8)
F(Dx)h(x) = h(x) .
t=0
Then, the formal solution to problem (11-1,2) may be written as
U(x,t) = G(DX,Dt)f(x,t) + F(Dx)h(x). (11-9)

Convergence of the formal series involved is to be handled just as in

section 6.
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